²úÆ·ÖÐÐÄ
ÁªÏµÒâ´óÀû¹ó±ö»á¹ÙÍø
ÏúÊÛרÓãº
µØµã£º±±¾©Êк£µíÇøÎ÷С¿Ú·66ºÅÖйش嶫Éý¿Æ¼¼Ô°C-1Â¥Èý²ã

PEG (Acrylate)2
²úÆ·´úºÅ£º
ACLT-PEG-ACLT
²úÆ·´¿¶È£º
¡Ý 95%
°ü×°¹æ¸ñ£º
1g, 10g, 100gµÈ£¨ÌØÊâ°ü×°ÐèÊÕÈ¡·Ö×°Óöȣ©
·Ö×ÓÁ¿£º
2000 Da,3500 Da, 5000 Da, 7500 DaµÈ
Òªº¦´Ê£º
ËùÊô·ÖÀࣺ
¿ÆÑпͻ§Ð¡ÅúÁ¿Ò»¼ü²É¹ºµØµã£¨Ð¡ÓÚ5¿Ë£©
- ²úÆ·ÃèÊö
- ²Î¿¼ÎÄÏ×
-
¡¡¡¡Òâ´óÀû¹ó±ö»á¹ÙÍø¿Æ¼¼Ìṩ¸ßÆ·ÖÊË«¶Ë±ûÏ©Ëáõ¥¾ÛÒÒ¶þ´¼²úÆ·£¬²úÆ·È¡´úÂÊ¡Ý95%¡£
¡¡¡¡Òâ´óÀû¹ó±ö»á¹ÙÍø¿Æ¼¼Éú²úµÄË«±ûÏ©Ëáõ¥ÊÇÒ»ÖÖÓÃÓÚº¬Áò»ù/Áò´¼·Ö×ÓµÄPEGÐÞÊεÄͬ˫¹¦Ð§PEG¡£±ûÏ©Ëáõ¥Í¨³£ÓÃÓÚÒÒÏ©»ù¾ÛºÏ»ò¹²¾ÛºÏ¡£Òâ´óÀû¹ó±ö»á¹ÙÍø¿Æ¼¼µÄͬ˫¹¦Ð§PEGÑÜÉúÎï¿É×÷Ϊ½»Áª¼Á¹ã·ºÓ¦ÓÃÓÚÂѰ×ÖʺÍëĵÄPEGÐÞÊΡ¢ÄÉÃ׿ÅÁ£¼°Íâò¸ÄÐÔÖС£ÓëʹÓÃÏßÐÔPEGÐÞÊεÄ΢Á£Ïà±È£¬Óëͬ˫¹¦Ð§PEG׺ºÏµÄ¿ÅÁ£¿É°ü¹Ü¸ü¸ßµÄÔØÒ©Á¿¡£
²úÆ·±àÂë
²úÆ·´úºÅ
A4047
ACLT-PEG2000-ACLT
A4048
ACLT-PEG3500-ACLT
A4049
ACLT-PEG5000-ACLT
A4050
ACLT-PEG7500-ACLT
¡¡¡¡Òâ´óÀû¹ó±ö»á¹ÙÍø¿Æ¼¼ÌṩACLT-PEG-ACLT·Ö×ÓÁ¿2000 Da,3500 Da, 5000 Da, 7500 DaµÄ²úÆ·1¿ËºÍ10¿Ë°ü×°¡£
¡¡¡¡Òâ´óÀû¹ó±ö»á¹ÙÍø¿Æ¼¼Ìṩ·ÖװЧÀÍ£¬ÐèÒªÊÕÈ¡·Ö×°Óöȣ¬Èç¹ûÄúÐèÒª·ÖװΪÆäËû¹æ¸ñÇëÓëÎÒÃÇÁªÏµ¡£
¡¡¡¡Òâ´óÀû¹ó±ö»á¹ÙÍø¿Æ¼¼Í¬Ê±ÌṩÆäËû·Ö×ÓÁ¿µÄACLT-PEG-ACLTÑÜÉúÎï²úÆ·£¬ÈçÄãÐèÒªÇëÓëÎÒ˾sales@jenkem.comÁªÏµ¡£
¡¡¡¡Òâ´óÀû¹ó±ö»á¹ÙÍø¿Æ¼¼Ìṩ´óÅúÁ¿Éú²ú²úÆ·¼°GMP¼¶±ð²úÆ·£¬ÈçÐ豨¼ÛÇëÓëÎÒÃÇÁªÏµ¡£
-
¡¡¡¡References:
¡¡¡¡1. Gottipati, A., et al., Gelatin Based Polymer Cell Coating Improves Bone Marrow-Derived Cell Retention in the Heart after Myocardial Infarction, Stem Cell Reviews and Reports, 2019.
¡¡¡¡2. Day, J.R., et al., The impact of functional groups of poly(ethylene glycol) macromers on the physical properties of photo-polymerized hydrogels and the local inflammatory response in the host, Acta Biomaterialia, 2018, V. 67, P. 42-52.
¡¡¡¡3. Tan, J.J., et al.,. Impact of substrate stiffness on dermal papilla aggregates in microgels, Biomaterials science, 2018.
¡¡¡¡4. Jiang, Z., et al., A microfluidic-based cell encapsulation platform to achieve high long-term cell viability in photopolymerized PEGNB hydrogel microspheres. Journal of Materials Chemistry B, 2017, 5(1):173-80.
¡¡¡¡5. Pedron, S., et al., Patterning Three-Dimensional Hydrogel Microenvironments Using Hyperbranched Polyglycerols for Independent Control of Mesh Size and Stiffness. Biomacromolecules, 2017, 18(4):1393-400.
¡¡¡¡6. Acun, A., et al., Engineered Myocardium Model to Study the Roles of HIF-1α and HIF1A-AS1 in Paracrine-only Signaling under Pathological Level Oxidative Stress, Acta Biomaterialia, 2017.
¡¡¡¡7. DiVito, K.A., et al., Data characterizing microfabricated human blood vessels created via hydrodynamic focusing, Data in Brief, 2017, 14, P. 156-162.
¡¡¡¡8. Liang, Y., et al., Controlled release of an anthrax toxin-neutralizing antibody from hydrolytically degradable polyethylene glycol hydrogels, Journal of Biomedical Materials Research Part A, 2016, 104:1, p. 113–123.
¡¡¡¡9. Feng, Q., et al., Mechanically Resilient, Injectable, and Bioadhesive Supramolecular Gelatin Hydrogels Crosslinked by Weak Host-Guest Interactions Assist Cell Infiltration and In Situ Tissue Regeneration, Biomaterials, 2016.
¡¡¡¡10. Lilly, J.L., et al., Characterization of Molecular Transport in Ultrathin Hydrogel Coatings for Cellular Immunoprotection, Biomacromolecules, 2015, 16 (2), 541-549
¡¡¡¡11. Hao, Y., et al., Visible Light Cured Thiol-Vinyl Hydrogels with Tunable Gelation and Degradation, Purdue University Library, 2014.
¡¡¡¡12. Jing, P., In Vitro Hair Follicle Engineering, National University of Singapore, 2014.
¡¡¡¡13. Pan, J., Fabrication of a 3D hair follicle-like hydrogel by soft lithography, J Biomed Mater Res Part A, 2013, 101(11):3159-69.
¡¡¡¡14. Pedron, S., et al., Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy, J. Biomed. Mater. Res., 2013, 101 (12), p. 3404–3415.
15. Basara, G., et al., Electrically conductive 3D printed Ti3C2Tx MXene-PEG composite constructs for cardiac tissue engineering, Acta Biomaterialia, 2020.
²úƷѯ¼Û